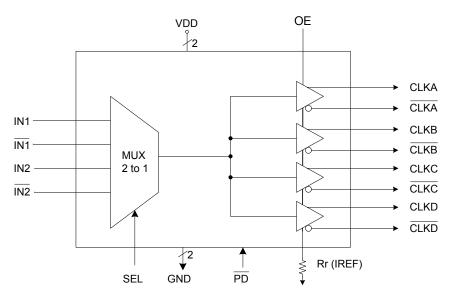
# ONE TO FOUR HCSL CLOCK BUFFER

## **Description**


The ICS557-06 is a one to four differential to HCSL (Host Clock Signal Level) clock buffer designed for use in PCI-Express applications. The device selects one of the two differential input pairs and fans out to four pairs of differential outputs.

A 20-pin TSSOP package is employed to maximize board space utilization.

#### **Features**

- Packaged in 20-pin TSSOP
- · Available in Pb (lead) free package
- Operating voltage of 3.3 V
- Low power consumption
- Input differential clock of up to 200 MHz (can accept LVDS, HCSL)
- Outputs, four pairs (HCSL, 0.7 V Current mode differential pair)
- Jitter 100 ps (peak-to-peak)
- Output skew of 50 ps
- Operating frequency of 80 MHz to 200 MHz

## **Block Diagram**





# **Pin Assignment**

| 051             |   |               |            |   |                          |
|-----------------|---|---------------|------------|---|--------------------------|
| SEL             | Ч | 1             | 20         | Ш | CLKA                     |
| VDDIN           |   | 2             | 19         |   | CLKA                     |
| IN1             |   | 3             | 18         |   | CLKB                     |
| ĪN1             |   | 4             | 17         |   | $\overline{\text{CLKB}}$ |
| $\overline{PD}$ |   | 5             | 16         |   | GND                      |
| IN2             |   | 6             | 15         |   | VDD                      |
| ĪN2             |   | 7             | 14         |   | CLKC                     |
| Œ               |   | 8             | 13         |   | $\overline{\text{CLKC}}$ |
| GND             |   | 9             | 12         |   | CLKD                     |
| IREF            |   | 10            | 11         |   | $\overline{\text{CLKD}}$ |
|                 |   |               |            |   |                          |
|                 |   | 20-pin (173 r | nil) TSSOF | ) |                          |
|                 |   |               |            |   |                          |

### Select table

| SEL | Input Pair<br>selected |  |  |
|-----|------------------------|--|--|
| 0   | IN2/ IN2               |  |  |
| 1   | IN1/ ĪN1               |  |  |

# **Pin Descriptions**

| Pin | Pin<br>Name | Pin<br>Type | Pin Description                                                                                                       |
|-----|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------|
| 1   | SEL         | Input       | SEL=1 selects IN1/IN1. SEL =0 selects IN2/ IN2. Internal pull-up resistor.                                            |
| 2   | VDDIN       | Power       | Connect to +3.3 V. Supply voltage for Input clocks.                                                                   |
| 3   | IN1         | Input       | HCSL/LVDS true input signal 1.                                                                                        |
| 4   | ĪN1         | Input       | HCSL/LVDS complimentary input signal 1.                                                                               |
| 5   | PD          | Input       | Powers down the chip and tri-states outputs when low. Internal pull-up resistor.                                      |
| 6   | IN2         | Input       | HCSL/LVDS true input signal 2.                                                                                        |
| 7   | ĪN2         | Input       | HCSL/LVDS complimentary input signal 2.                                                                               |
| 8   | OE          | Input       | Provides fast output on, tri-states output (High = enable outputs; Low = disable). Internal pull-up resistor outputs. |
| 9   | GND         | Power       | Connect to ground.                                                                                                    |
| 10  | Rr(IREF)    | Output      | Precision resistor attached to this pin is connected to the internal current reference.                               |
| 11  | CLKD        | Output      | Differential Complimentary clock.                                                                                     |
| 12  | CLKD        | Output      | Differential True clock.                                                                                              |
| 13  | CLKC        | Output      | Differential Complimentary clock.                                                                                     |
| 14  | CLKC        | Output      | Differential True clock.                                                                                              |
| 15  | VDDOUT      | Power       | Connect to +3.3 V. Supply Voltage for Output Clocks.                                                                  |
| 16  | GND         | Power       | Connect to ground.                                                                                                    |
| 17  | CLKB        | Output      | Differential Complimentary clock.                                                                                     |
| 18  | CLKB        | Output      | Differential True clock.                                                                                              |
| 19  | CLKA        | Output      | Differential Complimentary clock.                                                                                     |
| 20  | CLKA        | Output      | True clock.                                                                                                           |



### **Application Information**

#### **Decoupling Capacitors**

As with any high-performance mixed-signal IC, the ICS557-06 must be isolated from system power supply noise to perform optimally.

Decoupling capacitors of 0.01µF must be connected between each VDD and the PCB ground plane.

#### **PCB Layout Recommendations**

For optimum device performance and lowest output phase noise, the following guidelines should be observed.

Each 0.01µF decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible. No vias should be used between decoupling capacitor and VDD pin. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.

2) An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (the ferrite bead and bulk decoupling capacitor can be mounted on the back). Other signal traces should be routed away from the ICS557-06.

This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.

### **External Components**

A minimum number of external components are required for proper operation. Decoupling capacitors of 0.01  $\mu$ F should be connected between VDD and GND pairs (2,9 and 15,16) as close to the device as possible.

#### Current Reference Source R<sub>r</sub> (Iref)

If board target trace impedance (Z) is  $50\Omega$ , then Rr =  $475\Omega$  (1%), providing IREF of 2.32 mA, output current (I<sub>OH</sub>) is equal to 6\*IREF.

#### Load Resistors R<sub>I</sub>

Since the clock outputs are open source outputs, 50 ohm external resistors to ground are to be connected at each clock output.



## **Absolute Maximum Ratings**

Stresses above the ratings listed below can cause permanent damage to the ICS557-06. These ratings are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

| Item                          | Rating              |
|-------------------------------|---------------------|
| Supply Voltage, VDD, VDDA     | 5.5 V               |
| All Inputs and Outputs        | -0.5 V to VDD+0.5 V |
| Ambient Operating Temperature | 0 to +70°C          |
| Storage Temperature           | -65 to +150°C       |
| Junction Temperature          | 125°C               |
| Soldering Temperature         | 260°C               |
| ESD Protection (Input)        | 2000 V min. (HBM)   |

#### **DC Electrical Characteristics**

Unless stated otherwise, VDD = 3.3 V ±5%, Ambient Temperature 0 to +70°C

| Parameter                          | Symbol            | Conditions             | Min.    | Тур. | Max.     | Units |
|------------------------------------|-------------------|------------------------|---------|------|----------|-------|
| Supply Voltage                     | V                 |                        | 3.135   |      | 3.465    |       |
| Input High Voltage <sup>1</sup>    | V <sub>IH</sub>   | OE, SEL, PD            | 2.0     |      | VDD +0.3 | V     |
| Input Low Voltage <sup>1</sup>     | V <sub>IL</sub>   | OE, SEL, PD            | VSS-0.3 |      | 0.8      | V     |
| Input Leakage Current <sup>2</sup> | I <sub>IL</sub>   | 0 < Vin < VDD          | -5      |      | 5        | μΑ    |
| Operating Supply Current           | I <sub>DD</sub>   | 50Ω, 2pF               |         |      | 55       | mA    |
|                                    | I <sub>DDOE</sub> | OE =Low                |         |      | 20       | mA    |
|                                    | I <sub>DDPD</sub> | No load, PD =Low       |         |      | 400      | μΑ    |
| Input Capacitance                  | C <sub>IN</sub>   | Input pin capacitance  |         |      | 7        | pF    |
| Output Capacitance                 | C <sub>OUT</sub>  | Output pin capacitance |         |      | 6        | pF    |
| Pin Inductance                     | L <sub>PIN</sub>  |                        |         |      | 5        | nΗ    |
| Output Resistance                  | R <sub>OUT</sub>  | CLKOUT                 | 3.0     |      |          | kΩ    |
| Pull-up Resistor                   | R <sub>PU</sub>   |                        | 110     |      |          | kΩ    |

 $<sup>^{1}</sup>_{2}\,\mathrm{Single}$  edge is monotonic when transitioning through region.  $^{2}\,\mathrm{Inputs}$  with pull-ups/-downs are not included.



### **AC Electrical Characteristics - CLKOUTA/CLKOUTB**

Unless stated otherwise, VDD=3.3 V ±5%, Ambient Temperature 0 to +70°C

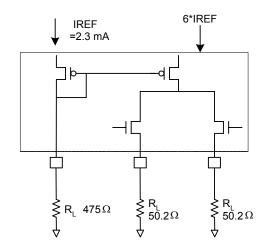
| Parameter Symbol                           |                     | nbol Conditions                                                                                                                |       | Тур. | Max.  | Units |  |
|--------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|-------|--|
| Input Frequency                            |                     |                                                                                                                                | 80    |      | 200   | MHz   |  |
| Output Frequency                           |                     |                                                                                                                                | 80    |      | 200   | MHz   |  |
| Input High Voltage <sup>1,2</sup>          | V <sub>IH</sub>     | HCSL                                                                                                                           | 660   | 700  | 850   | mV    |  |
| Input Low Voltage <sup>1,2</sup>           | $V_{IL}$            | HCSL                                                                                                                           | -150  | 0    |       | mV    |  |
| Differential Input<br>Voltages             | (V <sub>ID</sub> )  | LVDS                                                                                                                           | 250   | 350  | 450   | mV    |  |
| Input Offset Voltage                       | (V <sub>IS</sub> )  | LVDS                                                                                                                           | 1.125 | 1.25 | 1.375 | V     |  |
| Output High Voltage <sup>1,2</sup>         | V <sub>OH</sub>     | HCSL                                                                                                                           | 660   | 700  | 850   | mV    |  |
| Output Low Voltage <sup>1,2</sup>          | $V_{OL}$            | HCSL                                                                                                                           | -150  | 0    |       | mV    |  |
| Crossing Point<br>Voltage <sup>1,2</sup>   |                     | Absolute                                                                                                                       | 250   | 350  | 550   | mV    |  |
| Crossing Point<br>Voltage <sup>1,2,4</sup> |                     | Variation over all edges                                                                                                       |       |      | 140   | mV    |  |
| Jitter, Cycle-to-Cycle <sup>1,3</sup>      |                     |                                                                                                                                |       | 100  |       | ps    |  |
| Rise Time <sup>1,2</sup>                   | t <sub>OR</sub>     | From 0.175 V to 0.525 V                                                                                                        | 175   | 332  | 700   | ps    |  |
| Fall Time <sup>1,2</sup>                   | t <sub>OF</sub>     | From 0.525 V to 0.175 V                                                                                                        | 175   | 344  | 700   | ps    |  |
| Rise/Fall Time<br>Variation <sup>1,2</sup> |                     |                                                                                                                                |       |      | 125   | ps    |  |
| Skew between Outputs                       |                     | Measured at crossing point                                                                                                     |       |      | 50    | ps    |  |
| Duty Cycle <sup>1,3</sup>                  |                     |                                                                                                                                | 45    |      | 55    | %     |  |
| Output Enable Time <sup>5</sup>            |                     | All outputs                                                                                                                    |       | 10   |       | us    |  |
| Output Disable Time <sup>5</sup>           |                     | All outputs                                                                                                                    |       | 10   |       | us    |  |
| Stabilization Time                         | t <sub>STABLE</sub> | From power-up VDD=3.3 V                                                                                                        |       | 3.0  |       | ms    |  |
| Spread Change Time                         | t <sub>SPREAD</sub> | Settling period after spread change                                                                                            |       | 3.0  |       | ms    |  |
| Input to Output Delay                      |                     | Input differential clock to output differential clock delay measured at mid point of input levels to mid pint of output levels |       | 3    |       | ns    |  |

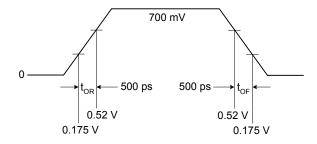
<sup>&</sup>lt;sup>1</sup> Test setup is  $R_L$ =50 ohms with 2 pF,  $Rr = 475\Omega$  (1%).

<sup>&</sup>lt;sup>2</sup> Measurement taken from a single-ended waveform.

<sup>&</sup>lt;sup>3</sup> Measurement taken from a differential waveform.

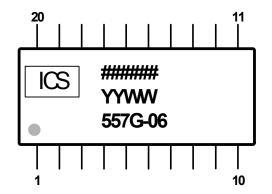
<sup>&</sup>lt;sup>4</sup> Measured at the crossing point where instantaneous voltages of both CLKOUT and CLKOUT are equal.


<sup>&</sup>lt;sup>5</sup> <u>CL</u>KOUT pins are tri-stated when OE is Low asserted. CLKOUT is driven differential when OE is High unless its PD = low.

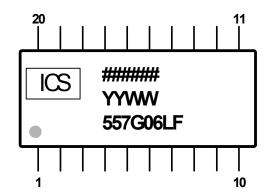



### **Thermal Characteristics**

| Parameter                           | Symbol            | Conditions     | Min. | Тур. | Max. | Units |
|-------------------------------------|-------------------|----------------|------|------|------|-------|
| Thermal Resistance Junction to      | $\theta_{\sf JA}$ | Still air      |      | 93   |      | °C/W  |
| Ambient                             | $\theta_{\sf JA}$ | 1 m/s air flow |      | 78   |      | °C/W  |
|                                     | $\theta_{\sf JA}$ | 3 m/s air flow |      | 65   |      | °C/W  |
| Thermal Resistance Junction to Case | $\theta_{\sf JC}$ |                |      | 20   |      | °C/W  |


# **HCSL Output Loads**





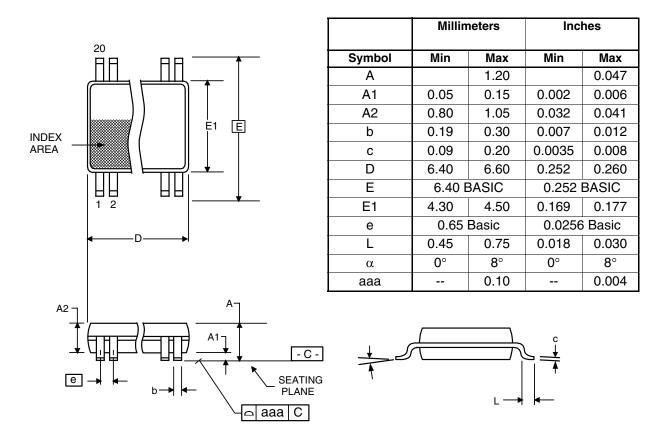



# **Marking Diagram**



# Marking Diagram (Pb free)




#### Notes:

- 1. ##### is the lot code.
- 2. YYWW is the last two digits of the year, and the week number that the part was assembled.
- 3. "LF" denotes Pb free package.
- 4. Bottom marking: (origin). Origin = country of origin if not USA.



### Package Outline and Package Dimensions (20-pin TSSOP, 173 Mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95



## **Ordering Information**

| Part / Order Number | Marking    | Shipping Packaging | Package      | Temperature |
|---------------------|------------|--------------------|--------------|-------------|
| ICS557G-06          | See Page 4 | Tubes              | 20-pin TSSOP | 0 to +70° C |
| ICS557G-06T         |            | Tape and Reel      | 20-pin TSSOP | 0 to +70° C |
| ICS557G-06LF        |            | Tubes              | 20-pin TSSOP | 0 to +70° C |
| ICS557G-06LFT       |            | Tape and Reel      | 20-pin TSSOP | 0 to +70° C |

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.